Number Champions

$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$ Glossary for Year-1 and Year-2 maths October 2019
 fun + skills $=$ confidence

The goal of this document is to explain maths concepts and terms used in school years 1 and 2. Some of the concepts will be new to most adults, but often the concept will be familiar and the adult will simply not know the specialised vocabulary used in the classroom.

In compiling this glossary we have reviewed glossaries produced by the National Centre for Excellence in the Teaching of Mathematics and by Parent Run, as well as other sources.

Entries which are not alphabetic are listed at the end.
Addition is a binary operation which adds two numbers to give their sum. For whole numbers it is essentially the same as counting. Thus, as 6 is the count of six objects, and 3 is the count of three objects, $6+3=9$, because 9 is the total count of six objects and three objects heaped together. ' $6+3$ ' is read as ' 6 plus 3 ' or ' 6 and 3 '. The addition of more than two numbers is defined through the associative property of addition. Sometimes "join", "sum", or "total" are used to signify addition.

Defining addition for fractions is more complicated and is introduced in later school years.
An addend is one of the two numbers added in an addition sum. Thus in $2+3=5$ the addends are 2 and 3 and the sum is 5 .

An analogue clock is a (usually) circular-faced clock with the numbers one to twelve around the outside and two hands, a shorter one to measure hours and a longer one to measure minutes. A 'digital clock' is a clock which displays numbers to denote the time, for example showing half past nine in the morning as 09:30.
The angle between two lines meeting at a point is how much you have to move one line clockwise or anti-clockwise to lie on top of the second line. A right angle is the angle a quarter of the way round the circle, for example, the angle between clock hands at 3 o'clock. All four angles in a square or rectangle are right angles.

The picture shows the clock hands at 2 o'clock, with the hour hand a sixth of the way round the dial. This shows an angle of '60 degrees', but note that using 'degrees' to measure angles comes only in later school years.

An array is a pictorial representation of rows of dots, to help children understand multiplication, division, and times tables. Thus 4×5 gives an array with 4 'rows' of 5 dots: Counting gives $4 \times 5=20$. This can also be described as 5 'columns' with 4 dots in each column.

A group of numbers is in ascending order when they are in order from smallest to largest. For example, 2, 11, 13, 101. The opposite is descending order. A typical list of numbers such as $1,8,3,12$ is neither in ascending nor descending order.

The associative property is that when we add or multiply more than 2 numbers the grouping doesn't matter. So even though we define addition only for two numbers ($2+3=5$) we can use it for many numbers $(2+3+4=9)$ since $(2+3)+4=5+4=9$ and $2+(3+4)=2+7=9$. Subtraction and division are not associative. For example, (4-2) $-1=1$ while $4-(2-1)=3$.

A bar chart is a chart that displays information (data) by using rectangular bars of different heights, showing the count of each item on a vertical axis.

A 'block graph' or 'block diagram' is a bar chart where each bar is split into blocks so that you can easily count the number of items. Thus the cat bar is split into 3 blocks and the dog bar into 5 .

Bar modelling is a method for children to visualise many numerical problems and hence to understand better how to solve them. For example, Ana has 13 sweets and Ben has 5. How many more sweets does Ana have than Ben?

Number of pets of children in the class
6

The bar model diagram would be:

The diagram should be roughly to scale so as to represent the real-life problem.

A binary operation is a rule which takes two numbers and gives a third number. Examples are addition and subtraction.

Cardinal numbers count objects and tell us about quantity (one, two, three, four, 26, 528, etc.). This is in contrast to ordinal numbers which note position in a series.

A Carroll diagram (named after Lewis Carroll) organises data according to whether each item has or does not have specific properties.

The information is presented in rows and columns. Thus:

	Even	Odd
Multiple of 3	$6,12,18,24,30$	$3,9,15,21,27$, 33
Not multiple of 3	$2,4,8,10,14$, $16,20,22,26$, 28,32	$1,5,7,11,13,19,23,25$,

A circle is a 2D curved shape, every point of which is the same distance from a special point called the 'centre':

The circumference is both the curved line around the edge of a circle and the length of this line.

The diagram also shows 3 separate diameters of the circle - these are
 the straight lines from the circumference to itself through the centre, where all the diameters meet. Half a diameter, from the centre to the circumference, is a radius.

Something moving in a circle in a clockwise direction is moving in the same direction as the hands on the clock. Something moving 'anti-clockwise' is moving in the opposite direction.

In the column method of addition and subtraction, numbers are set up in columns of units, tens, hundreds, etc. Units may be called 'ones'. Column headers may be included, written as $\mathrm{H}, \mathrm{T}, \mathrm{U}$.

H	T	U		
	3	5		
+	6	7		
1	0	2	\quad	4
---:				

The commutative property is that we can swap the order of numbers within addition or multiplication without affecting the results of the calculation; thus $2+4=4+2$ and $6 \times 7=$ 7X6. Note that subtraction and division are not commutative. For example, $4 \div 2=2$ and $2 \div 4=1 / 2$.

Data handling is the term for all of the techniques used to collect and represent data which can be described using numbers. Examples in this glossary are bar charts and tally charts.

A data set is the data collected in a data handling exercise, with a focus on the numerical elements.

The denominator is the bottom number of a fraction. So in the fraction $3 / 8$ the denominator is 8 , and in $1 / 2$ the denominator is 2 .

When numbers are in descending order, they are ordered from largest to smallest. For example, $88,77,23,18,5,0$. The opposite is ascending order. A typical list of numbers such as $1,8,3,12$ is neither in descending nor ascending order.

A diagonal is a straight line joining two 'nonadjacent vertices' of a shape, that is, two corners of a shape that are not next to each other. The diagrams show two separate diagonals of a hexagon and one diagonal of a rectangle.

A diameter is a straight line going through the centre of a circle, connecting two points on the circumference. 'The diameter of a circle' can also refer to the length of this line.

The diagram shows 3 separate diameters meeting at the centre. Half a diameter, from the centre to the circumference, is a radius.

The difference between two numbers is the larger number minus the smaller.
The distributive property is that 'multiplication distributes over addition'. Thus $21=3 X(5+2)=(3 X 5)+(3 X 2)=15+6=21$.

One whole number is divisible by another if it is a multiple of the second number. Thus since $3 \times 4=12,12$ is a multiple of 3 (and also 12 is a multiple of 4).

Division is a binary operation which equates to sharing a number of objects equally among a number of people. It takes two numbers, the 'dividend' and the 'divisor', and outputs their 'quotient'. In $10 \div 5=2,10$ is the dividend, 5 is the divisor, and 2 is the quotient. The quotient is the whole number which when multiplied by the divisor gives the dividend. Thus $10 \div 5=2$ since $2 X 5=10$. Division is therefore the inverse operation to multiplication. ' $10 \div 5$ ' is read as ' 10 divided by 5 '.

Often division cannot be done exactly, because there is no whole number which multiplies the divisor to give the dividend. For example, there is no whole number which multiplied by 5 gives 13. The highest multiple of 5 less than 13 is 10 , so we write that $13 \div 5=2$ remainder 3 , which means that $2 X 5=10$ and adding 3 gives you 13 . This makes sense, since if we had 13 objects we could give 2 to each of 5 people and have 3 left over.

If you allow the quotient to be a fraction rather than a whole number, you can always find an exact quotient without using remainders. This is done in later school years.

Division can also be defined in terms of 'repeated subtraction' in the same way that multiplication is defined in terms of repeated addition.

An equality is a number sentence where one side equals the other, such as $4+4=10-2$.

Two fractions are equivalent when they have the same numeric value, but are expressed using a different numerator and denominator.
'Simplifying a fraction' means finding an equivalent fraction where the numerator and

denominator are smaller. For example, 4/12 can be simplified to $2 / 6$ or $1 / 3$.

An estimate is sometimes called a 'clever guess'. Estimating means roughly calculating or judging a number or value. It is an important part of learning to work with numbers.

An even number is a whole number that can be divided into two equal groups, or, equivalently, is divisible by 2 . Even numbers always end in 2, 4, 6, 8 or 0 . A whole number which is not even is odd.

Exchange is another term used for regrouping, especially for subtraction.
Expanded notation is writing numbers or number sentences in which the numbers are partitioned. Thus $67+43$ could be written as $60+7+40+3$.

A factor is a whole number that divides a given whole number without a remainder. Thus both 3 and 6 are factors of 18 , because $18=3 \times 6$.

A fraction is written as one whole number over another, for example $3 / 4$. The lower number, the denominator, cannot be 0 . Fractions are numbers, but they are usually not whole numbers. If the numerator (the top line) is 1 , then the meaning of the fraction is that it is that part of one which multiplied by the denominator equals one Thus $1 / 2$ is the number which multiplied by 2 gives you 1 , and $1 / 3$ is the number which multiplied by 3 gives you one. This is easiest to understand by looking at pictures of shapes cut into equal pieces. The whole shape is assumed to equal 1 .

$1 / 2$ or $1 / 3$ or any fraction with a numerator of 1 and a denominator greater than 1 is less than 1 , and therefore is not a whole number.

A fraction such as $4 / 5$ is defined to be $1 / 5+1 / 5+1 / 5+1 / 5$, that is the same multiplication by 4 using repeated addition that is used in the definition of multiplication for whole numbers. By following through the definition, you can see that $5 / 5$ (or any fraction where the numerator equals the denominator) equals 1.

A fraction where the numerator is greater than the denominator, such as $6 / 5$, will therefore be greater than 1 . Such a fraction is called an 'improper fraction'.

The full calculations for adding, subtracting, multiplying, and dividing fractions are taught in later school years. This includes the definition of a fraction as being equivalent to division, so that, for example, $4 / 5=4 \div 5$.

A hexagon is a 2D shape whose edge is 6 straight lines with 6 corners. A hexagon is a 6sided polygon.
A horizontal line is a straight line that runs from right to left, like the horizon. You read on horizontal lines.

An inequality is a number sentence where one side is bigger or small than the other, such as $8>6$ or $3 X 3<2 X 5$.

An improper fraction is a fraction where the numerator is bigger than the denominator, for example $7 / 3$. An improper fraction is greater than 1 .For example, since $3 / 3=1,7 / 3>1$.

Inverse operations are opposite operations in which one reverses the effect of the other. Subtraction is the inverse of addition and division is the inverse of multiplication. Thus $12-8=4$, and $4+8=12$. Similarly, $16 \div 2=8$ and $8 X 2=16$.

An irregular polygon is a polygon which is not regular. That is, there are at least two sides which are not the same length or there are at least two corners at which the angles are different. 'Special' polygons can be irregular. Thus a rectangle which is not a square is an irregular polygon, even though it has four angles the same and two pairs of sides the same.

Irregular triangles: The left one has two sides the same but one different, so it is irregular. It also has one angle different. (The two equal sides give it the special name: 'isosceles triangle'.) The right-hand triangle has all its sides and angles different.

Carrying out a mathematical investigation means applying skills and knowledge to solving problems. Investigations differ from word problems because there isn't always just one way to work them out and the solution might have to be found through trial and error. There could be several acceptable answers.

A mixed number is made up of a whole number and a fraction, for example $91 / 2$.
A multiple is a number that can be divided by another number a certain number of times without a remainder. For example, 20 is a multiple of 4 and it is also a multiple of 5 , because $20=4 X 5$.

Multiplication is a binary operation which equates to repeated addition. Thus 6X7 (read as ' 6 times 7 ' or ' 6 multiplied by 7 ') is $7+7+7+7+7+7$, which is six sevens added together. The answer 42 is the product. Children learn times tables and other calculation methods so that they can do multiplication directly without needing to do repeated addition.

Number is not defined in this glossary! This is because you learn about more and more types of number as you progress through school and beyond. The glossary does define whole numbers and fractions, which are important types of number. Often people say 'number' when they really mean whole number.

Number bonds are the pairs of whole numbers that add to make a given number. Thus number bonds to 10 are $0+10,1+9,2+8,3+7,4+6,5+5 ; 6+4,7+3,8+2,9+1$, and $10+0$.

Number facts are basic addition, subtraction, multiplication and division calculations that children should learn to recall instantly. For example, a multiplication fact for 18 could
be 2×9, and an addition fact for 16 could be $7+9$. Similarly a subtraction fact for 20 could be 20-9=11. Number facts can be used to simplify and speed mental calculations.

A number line is a line with numbers written at intervals along its length. In early years number lines will have only whole numbers, although later in their education children will meet number lines with fractions and 'decimals'. The line can start and finish at any numbers. 'Number ladder' is sometimes used to refer to a number line. Examples are:

A number sentence is an arrangement of numbers and symbols giving a true statement. Thus $6+7=13$ is an addition number sentence, $45-6<40$ is a subtraction number sentence, and $4 \times 3=6 \times 2$ is a multiplication number sentence.

A number square is a rectangular grid of squares in which cells are numbered sequentially. A common number square is a 10 by 10 grid numbered from 1 to 100 . Many classrooms have a number square on a wall.

The numerator is the top number of a fraction. Thus in $3 / 8$, the numerator is 3 and in $1 / 9$ the numerator is 1 . A fraction with 1 as its numerator is called a 'unit fraction'.

An odd number is a whole number that cannot be divided into two equal groups, or equivalently is not divisible by 2 . Odd numbers end in $1,3,5,7$, or 9 . A whole number which is not odd is even.

The four mathematical operations are addition, subtraction, multiplication and division.
Ordinal numbers (first, second, third, $4^{\text {th }}, 23^{\text {rd }}$, etc.) tell the position of an item in a list.
Partitioning means separating numbers into the tens, units, hundreds, etc. that make them up. Thus 296 is $200+90+6$. Partitioning helps children understand place value. The terms 'units' and 'ones' are used interchangeably, although individual schools may prefer one or the other.

The perimeter is both the edge of a 2D shape and the distance around the edge.
Place value is the value of each digit in a number. It means for example, that 582 is made up of 500,80 and 2 , rather than 5 , 8 and 2 , so that the ' 5 ' means 5 hundreds, not 5 ones.

A polygon is a 2D shape whose edge is made of straight lines which meet in pairs at their corners but do not otherwise overlap. A polygon will have the same number of corners (or 'vertices') as it has sides. Common polygons are triangles (3 -sided) and squares and rectangles (4 -sided).

A 5 -sided polygon ('pentagon')

Not a polygon

- overlapping
sides

Not a polygon

- 4 sides meet at a corner

The product of two numbers is the result you get when you multiply them together. For example, 12 is the product of 3 and 4 , and 20 is the product of 4 and 5 .

The radius is a straight line from the centre of a circle to its circumference, or the length of this line.

The range is the difference between the lowest number and the highest number in a data set.

A rectangle is a 4-sided polygon in which each pair of opposite sides are the same length and the angles at the four corners are all right angles. (A normal sheet of paper is a rectangle.)

A regular polygon is a polygon in which all the sides are the same length and the angles at all the corners are the same. A square is a regular 4 -sided polygon, and there is a regular polygon for each number of sides.

A regular 'pentagon' - a 5-sided polygon

Regrouping is the operation used within addition or subtraction of taking ten ones and regrouping them into a ten (or vice versa). Thus to add 18 and 17, you start by adding the units 8 and 7 . This gives 15 , which we regroup into 5 ones and a ten. We now have three tens to add, giving 30 , so the answer is 35 .

The term exchange is often used in place of regrouping, especially in subtraction.
A subtraction example would be 24 minus 8 . You cannot subtract 8 from 4, so you regroup the 20 into ten plus ten and regroup one ten into ten ones. (In a written calculation you make a note of this so you don't forget.) Added to the 4 , this gives 14 ones, so we can do $14-8=6$. We have to remember that the original 20 is now 10 , so the answer is 16 .

Different schools may have differences in the detail with which they do regrouping, but the basic ideas and process will be as above.

A remainder is needed to show the result of a division calculation where the dividend is not an exact multiple of the divisor. Thus $7 \div 2=3$ remainder 1 , since if you divide 7 toy cars equally between 3 children, each child will get 2 cars and there will be 1 car left over.

Repeated addition is a method of defining multiplication as well as a way of helping children understand it. For example, 3 times 5 is presented as 3 rows of 5 dots and the children calculate it as $5+5+5$. This is related to $3 X 5$ in the five-times table.

A right angle is where two straight lines meet a quarter of the way round a circle - like clock hands at 3 o'clock. This is measured as ' 90 degrees' but note that using degrees to measure angles comes only in later school years.

Rounding numbers means adjusting the digits (up or down) to make estimates or rough calculations. Typically, you round numbers to the nearest 10, 100, or 1,000. Numbers ending in 5,50 , or 500 are halfway between 10s, 100s, or 1,000 s, and are usually 'rounded up' to the higher number. Thus if you are rounding to 10 s, 23 would be rounded to 20, and 125 to 130.

Share is a term used in the definition of division and in word problems to indicate division. Children learn that by sharing equally into groups they are dividing.

A square is a rectangle in which all four sides are the same length. It is thus a regular 4 -sided polygon in which all four angles are right angles.

Subtraction is a binary operation which takes a larger and a small number and outputs their difference. The difference is the number which when added to the smaller number gives the larger number. Thus $10-5=5$ as $5+5=10$. Subtraction is thus the inverse operation to addition. '10-5' is read as ' 10 minus 5 ' or ' 10 take away 5 '. Sometimes "deduct from", "decrease by", or "reduce by" are used to signify subtraction.

The sum of two numbers is the answer from adding them. Thus the sum of 5 and 4 is 9 .
A shape is symmetric if a dividing line (the 'mirror line' or axis of symmetry') can be drawn on it, so that one side of the shape can be folded across the mirror line and be exactly on top of the other side of the shape. The diagram shows a triangle with two equal sides with its dotted mirror line demonstrating that the shape is symmetric. Note that a
 shape may have several axes of symmetry - for example a square has four.

A tally chart uses marks representing numbers to count data items quickly and efficiently. One vertical mark is used to represent each unit; when five objects are counted the fifth line is crossed through the first four. Thus a tally chart would look like:

Pets of children in class		
Pet	Tally	Count
Fish	III	3
Cat	N1I	7
Dog		12

A triangle is a 2D shape with three straight sides and three corners. It is a 3 -sided polygon.
A two-step problem is a word problem that requires two operations to solve it; a multi-step problem requires more than two operations before the solution can be found.

A vertical line is a straight line which runs up and down the page, from top to bottom. When you are standing up, you are vertical.

A whole number is one of the set $0,1,2,3,4, \ldots$ where each member of the set is 1 more than the member before. There is no biggest whole number - the list goes on for ever. There are numbers which are not whole numbers - for example fractions.

A word problem (also known as a 'story problem') is a 'real-life' scenario where a problem needs to be solved using a mathematical calculation.
$>$ ('greater than') and < ('less than') symbols show the relationship between two numbers. For example, $56>34$ or $34<56$. Children remember 'the crocodile mouth opens to eat the big number'. A number is neither greater than nor less than itself; it equals itself, thus $6=6$.

The 12-hour clock runs from 12 midnight to 12 noon and then from 12 noon to 12 midnight.
The 24-hour clock uses the numbers 00:00 to 24:00 to represent hours and minutes. Thus 09:30 is half past nine in the morning, and 21:30 is half past nine in the evening. (Midnight is 24:00 of the day before and also 00:00 of the next day).

2D shapes are 'two-dimensional', or 'flat'. This is actually a very sophisticated concept, but the basic idea is that they can be drawn on paper, in contrast to solid 'three-dimensional' shapes. Examples of 2D shapes are triangles, rectangles, squares, and circles.

